
Krptn
Release v0.6

Krptn Project

May 13, 2024

KRPTN

1 Documentation Content 1
1.1 Krptn . 1
1.2 Configuration . 4
1.3 Custom Databases . 6
1.4 User Authentication . 7
1.5 Migrating to Krptn . 12
1.6 WebAuthn/FIDO Passwordless: both server and client setup guide 12
1.7 Flask Integration . 24
1.8 Django Integration . 24
1.9 Crypto Class . 27
1.10 Key Management System . 27
1.11 Building Krptn . 28
1.12 CLI Interface . 28
1.13 Common Issues . 29
1.14 Security Policy . 30
1.15 API Reference . 31

i

ii

CHAPTER

ONE

DOCUMENTATION CONTENT

1.1 Krptn

Quick Install:

pip install krptn

Note: we don’t have pre-built extensions for all platforms. Please see the installation section in this documentation for
more info.

If after reading this, you like our project, please consider staring on GitHub1!

1.1.1 What problem do we solve?

We all love Django and other web frameworks! However, their primary focus is creating websites - not implementing
secure storage for user data. One example is Django’s built-in authentication system. While it hashes the password, it
does not encrypt user data for you. Encryption is left to the developer. . .

Wouldn’t it be nice if encryption would also be handled? Perhaps it could be handled in a zero knowledge model,
such that, without the user entering credentials, not even the database administrator can read it?! Maybe it could even
use FIPS validated cryptography. This is exactly what we do!

To prove that such is possible, we have a Flask2 and Django3 example on GitHub.
1 https://github.com/krptn/krypton
2 https://github.com/krptn/flaskExample
3 https://github.com/krptn/djangoExample

1

https://github.com/krptn/krypton
https://github.com/krptn/flaskExample
https://github.com/krptn/djangoExample

Krptn, Release v0.6

1.1.2 What is this?

A user authentication and access management system (IAM) with Zero Knowledge security4. It is available as a Python
extension module. We, however, have certain limitations5.

How do we achieve this?

• All data is encrypted (any data can be requested by the developer to be secured)

• Only the appropriate users’ credentials can unlock the cryptosystem (this protects you from server-side attacks)

This gives you Zero Knowledge security6 (one of the most secure available) without ever needing to even notice it! It
protects you from server side attacks.

4 https://www.krptn.dev/news/zero-knowledge/
5 https://www.krptn.dev/news/limitations/
6 https://www.krptn.dev/news/zero-knowledge/

2 Chapter 1. Documentation Content

https://www.krptn.dev/news/zero-knowledge/
https://www.krptn.dev/news/limitations/
https://www.krptn.dev/news/zero-knowledge/

Krptn, Release v0.6

1.1.3 Features

• Secure Storage of Data

• User Authentication

• FIPS Validated Cryptography (via OpenSSL 3)*

• Secure memory wiping (except on PyPy)

• FIDO Passwordless*

• Integration with popular web frameworks

* FIDO (passwordless) does not use FIPS validated resolvers

Example usage of the Crypto Class

1 from krypton import basic
2 # Create an instance of Crypto - a class for encrypting and storing sensitive data.
3 myCrypto = basic.Crypto()
4 pwd = "Perhaps provided by the user"
5 # It supports C.R.U.D. operations:
6 id = myCrypto.secureCreate("Example data", pwd) #id is an integer
7 print("The data is:")
8 print(myCrypto.secureRead(id, pwd)) # prints Example data

1.1.4 Installation

Recommended: install using PIP:

pip install krptn

Because we do not have pre-built extensions for all platforms, you may need to build from source.

1.1.5 User Auth

See User Auth.

To use FIDO/WebAuthn with User Auth, please see Krptn’s FIDO Documentation7.

1.1.6 Integration with web frameworks

• Django

• Flask
7 https://docs.krptn.dev/README-FIDO.html

1.1. Krptn 3

https://docs.krptn.dev/README-FIDO.html

Krptn, Release v0.6

1.1.7 Crypto Class

Crypto Class

1.1.8 Key Management System

This module uses a custom Key Management System for AES-256 Keys. See KMS for more information.

Note: we have considered using HSM as a key management system. We, however, have decided that we will not
integrate HSMs because it would be difficult to maintain Zero Knowledge security.

Of course, all data is securely encrypted even if it is not via an HSM!

If you want, you can encrypt the SQL database using HSM managed keys for additional security.

1.1.9 Use custom databases

Here is an example of how to set the database to be used:

1 import krypton
2 krypton.configs.SQLDefaultCryptoDBpath = "sqlite+pysqlite:///Path/example.db"
3 krypton.configs.SQLDefaultKeyDBpath = "sqlite+pysqlite:///Path/key.db"

To see what these settings strings should contain please see Databases

1.1.10 Settings

Configurations

1.1.11 Planned

• APIs for other languages

• Premium features

1.2 Configuration

Note: A change in settings (with the excpetion of database changes) will not result in decryption and re-encryption of
data, only to apply the changes. Instead, the changes are applied when new data is encrypted, or old data is modified
- thereby slowly phasing out the old configuration. For example, when changing password hash iterations, the change
takes effect when the user resets their password.

Any database changes will result in Krptn assuming that all data has been migrated to the new database and is ready to
use. Krptn will stop using the old database but will finish any started user operations in there.

Simple, pythonic configuration:

4 Chapter 1. Documentation Content

Krptn, Release v0.6

1 import krypton
2

3 krypton.configs.defaultAlgorithm = "AES256GCM" # Sets which symmetric cipher to use in␣
→˓the KMS and Crypto Class(currently only AES256GCM is supported)

4

5 krypton.configs.defaultIterations = 600000 # Number of iterations for PBKDF2
6

7 krypton.configs.defaultPasswordResetIteration = 650000 # Number of iterations to use␣
→˓with PBKDF2 for password recovery codes.

8

9 krypton.configs.defaultCryptoperiod = 2 # Approx. number of years for the cryptoperiod␣
→˓of a key

10

11 krypton.configs.defaultSessionPeriod = 15 # Number of minutes before a user Session is␣
→˓destroyed.

12

13 krypton.configs.defaultLogRetentionPeriod = 43200 # Number of minutes to store login logs

Warning: When seting iteration counts for PBKDF2, make sure that it is not too low. A low value could make a
brute-force attack against the encryption in the database easy, if it is leaked. However, note that a high value slows
down your server. Depending on your needs, an appropriate value needs to be found.

For your information, as of 2023 January, OWASP recommended 600,000 iterations. NIST8 recommends a min-
imum of 1,000. For especially critical data, or for very powerful systems or systems where user-perceived perfor-
mance is not critical, NIST states that 10,000,000 iterations may be appropriate.

1.2.1 Databases

For the following settings please see Databases

1 krypton.configs.SQLDefaultCryptoDBpath = # for DB used by Crypto Class
2 krypton.configs.SQLDefaultKeyDBpath = # for DB used by Key Management System
3 krypton.configs.SQLDefaultUserDBpath = # for DB used by User Authentication System

1.2.2 FIDO Auth & MFA

These configuration options must be set for FIDO (passwordless Auth), and TOTP (time-based one-time passwords)
to work.

1 ## For both TOTP and FIDO
2 krypton.configs.APP_NAME = "ExampleApp" # name of your app
3

4 ## The below are only needed for FIDO
5 krypton.configs.HOST_NAME = "example.com" # hostname, as seen by the user's browser
6 krypton.configs.ORIGIN = "https://example.com/" # again, as seen by the user's browser

8 https://csrc.nist.gov/publications/detail/sp/800-132/final

1.2. Configuration 5

https://csrc.nist.gov/publications/detail/sp/800-132/final

Krptn, Release v0.6

1.3 Custom Databases

Warning: While all data saved in these databases is encrypted where necessary, please make sure that user
accounts, user privileges, backup, etc. are properly configured in the database. Just because the data is encrypted,
an unauthorized user can still delete it.

Note: Any database configuration changes will result in Krptn assuming that all data has been migrated to the new
database and is ready to use.

Internally, these strings are passed to SQLAlchemy9 to create an engine10. To add extra connection parameters, please
refer to SQLAlchemy’s and/or your chosen database’s SQL Driver documentation.

Please set these strings at:

1 krypton.configs.SQLDefaultCryptoDBpath = # for DB used by Crypto Class
2 krypton.configs.SQLDefaultKeyDBpath = # for DB used by Key Management System (you most␣

→˓likely don't need this)
3 krypton.configs.SQLDefaultUserDBpath = # for DB used by User Authentication System

1.3.1 Microsoft SQL Server

You need to install pyodbc11 and Microsoft ODBC Driver for SQL Server12

The string that you need to pass to this extension should look like this:

1 "mssql+pyodbc://user:password@host:port/dbname?driver=odbc driver e.
→˓g:ODBC+Driver+18+for+SQL+Server"

If you are only doing development, you may add the following to prevent installing an SSL certificate:

1 &Encrypt=no

To use windows authentication, please remove user:password from the string.

1.3.2 MySQL

Please install mysqlclient13.

1 "mysql+mysqldb://user:password@host:port/database"

9 https://www.sqlalchemy.org/
10 https://docs.sqlalchemy.org/en/14/core/engines.html
11 https://pypi.org/project/pyodbc/
12 https://docs.microsoft.com/en-us/sql/connect/odbc/download-odbc-driver-for-sql-server?view=sql-server-ver16
13 https://pypi.org/project/mysqlclient/

6 Chapter 1. Documentation Content

https://www.sqlalchemy.org/
https://docs.sqlalchemy.org/en/14/core/engines.html
https://pypi.org/project/pyodbc/
https://docs.microsoft.com/en-us/sql/connect/odbc/download-odbc-driver-for-sql-server?view=sql-server-ver16
https://pypi.org/project/mysqlclient/

Krptn, Release v0.6

1.3.3 SQLite

1 "sqlite+pysqlite:///Path/example.db"

1.3.4 PostgreSQL

Please install psycopg214.

1 "postgresql+psycopg2://user:password@host:port/databse"

1.4 User Authentication

Note:

• To use Authentication in a supported web framework please see integrations.

• There are many different errors that the User Authentication API may raise. To avoid surprises in production
environments, we encourage everyone to test what errors are raised on different edge cases (e.g.: incorrect pass-
word, missing MFA token).

Warning:

• This does not protect you against brute force attacks - make sure to enable rate limiting on your host.

• Usernames are not encrypted.

• User objects are not thread-safe. Please create a new object to use in each thread!

• Krptn does not verify the security of the password (e.g: complexity), please do this yourself!

• User names cannot be longer then 450 characters

Here is an example usage of creating a new user:

1 from krypton.auth.users import userModel
2

3 model = userModel.standardUser(None)
4 model.saveNewUser("Test_UserName", "Test_Password")

Warning: Please be carefull when setting credentials. The reasons are the following:

• If you lose your credentials, and have not enabled password reset, you will permanently loose access to your
account and data. To enable password reset, please read this document or skip to the part about password
resets.

• The encryption of your data is derieved from your credentials. Therefore, weak password equates to easily
cracked encryption.

All that said, don’t panic :-); just enable password resets and validate user passwords for length, complexity, etc. . .

14 https://pypi.org/project/psycopg2/

1.4. User Authentication 7

https://pypi.org/project/psycopg2/

Krptn, Release v0.6

To retreive the user and set user data as key-value pairs:

1 model = userModel.standardUser(userName="Test_UserName") # If user does not exist will␣
→˓fail silently

2 # It will raise an error on model.login as below.
3 sessionKey = model.login(pwd="Test_Password") # See below what sessionKey is
4 model.setData("test", "example") # test is the key and example is the value
5 data = model.getData("test") # Gives b"example". Would raise ValueError on error.
6 model.deleteData("test")

model = userModel.standardUser(userName="Test_UserName") can be replaced by model = userModel.
standardUser(userID=123). The userID can be obtained from model.id for a logged in user.

Note: Do make sure that the key in setData does not start with _ - those are reserved for Krypton internals.

To avoid side channel attacks, userModel.standardUser(userName="xyz") will fail silently if the user does not
exist. An error will be raised on login instead.

You can also use model.encryptWithUserKey with model.decryptWithUserKey, or shareSet with shareGet,
if you want other users to read it. Please study the Data Sharing section of this document.

Warning: In setData only the stored values are encrypted. Keys are plaintext!! Avoid storing sensitive data in
keys!

1.4.1 User Sessions

Session keys can be used to restore a session after the user object has been destroyed. For example, in a webserver, the
session key could be stored in a cookie, so that the model can be retrieved on each request.

Session keys are returned from user.login and user.saveNewUser.

To restore a session:

1 model = userModel.standardUser(userName="Test_UserName")
2 model.restoreSession(sessionKey)

To set session expiry please see the configurations.

Sign out of all sessions

1 model.revokeSessions()

8 Chapter 1. Documentation Content

Krptn, Release v0.6

1.4.2 Logs

To control the retention period of logs, please see the configurations.

Once the user is logged in, it is easy to recall the login logs:

1 model.getLogs()

This returns a list, in the folowing format:

[[time: datetime, success: bool], ...]

It is a 2-dimensional list. The first item in the nested list, is always the DateTime object representing the time of the
log. The second item in the nested list, is a Boolean representing the success status of the attempt.

As mentioned in ISO/IEC 27002, it is a good idea to display the past login attempts to the user. This way, the user can
easily notice an attack.

1.4.3 Change Username

In case you want to change the user’s username, you can simply do this by calling the changeUserName method.

1 model.changeUserName("NewName")

1.4.4 MFA

To avoid getting locked out, you may want to read Password Reset section of this document.

Before using MFA, make sure that the required configuration values are set.

TOTP

To enable:

1 secret, qr = model.enableMFA()
2 # Secret is a shared secret and qr is a string, that when converted to QR code can be␣

→˓scanned by authenticator apps.
3 # If QR Codes are not supported by the app, you can tell the user enter secret instead.
4 # You MUST discard these once the user enabled MFA.

When logging in:

1 model.login(pwd="pwd", mfaToken="123456")

If a wrong code is provided, Krptn will impose a 5 second delay to slow brute force attacks. However, please note that is
not enough to fully protect you. Therefore, it is necessary to employ a proper rate limiting solution on your webserver.

To disable TOTP (user must be logged in):

1 model.disableMFA()

Note: On a failed login attempt, we will impose a 5 second delay to slow down brute force attacks. This is not available
for purely password based authentication, so please do impose rate limiting protection on your server.

1.4. User Authentication 9

Krptn, Release v0.6

FIDO Passwordless

See FIDO Docs.

1.4.5 Data Sharing

Using these methods, you can grant another user access to some of the user’s data.

While deploying these methods, all data remains encrypted using the user’s credentials. No data is ever plaintext in a
database! We use Elliptic-curve Diffie–Hellman to share a common encryption key between the users, and we
encrypt the data with the common key. Each user has their own Elliptic Curve key, with the private key encrypted with
the user’s credentials.

Warning: One thing to note: if the original user used to set/encrypt the data is deleted. All other users will loose
access. It is important that the other users create their own copy if they want to retain it.

Sharing

1 model = userModel.standardUser(None)
2 model.saveNewUser("Test_UserName", "Test_Password") # Note: if a user with the same␣

→˓username exists an ValueError will be raised.
3

4 model2 = userModel.standardUser(None)
5 model2.saveNewUser("Test_UserName2", "Test_Password")
6

7 # Save value "data" with key "test" and allow access to user "Test_UserName"
8 user2.shareSet("test", "data", ["Test_UserName"])
9 value = model.shareGet("test") # returns b"data". Raises ValueError on error.

10 user2.shareDelete("test") # deletes the data - can only be done by the user who shared it

Note: Do make sure that the key in shareSet does not start with _ - those are reserved for Krypton internals.

If the same user has shareSet to another user multiple times with the same name, it is undefined which one will be
returned when the recieving user calls shareGet. To avoid such conflicts, make sure to shareDelete data, or use a
different name.

As you can see above, shareSet requires you to pass a unique name for the data ("test" in this case), the data ("data"
in this case), and a list of usernames who can access it (["Test_UserName"] above).

Encryption

When possible, it is preferred to use shareSet and shareGet but when required you can directly use only Krptn’s
encryption capabilities. E.g: if you want to use another database to store this data.

1 model = userModel.standardUser(None)
2 model.saveNewUser("Test_UserName", "Test_Password")
3

4 model2 = userModel.standardUser(None)
5 model2.saveNewUser("Test_UserName2", "Test_Password")

(continues on next page)

10 Chapter 1. Documentation Content

Krptn, Release v0.6

(continued from previous page)

6

7 r = model.encryptWithUserKey("data")
8 model.decryptWithUserKey(r) # Returns b"data"
9

10 ## Here is the tricky part:
11

12 r = model.encryptWithUserKey("data", ["Test_UserName2"]) # Allow Test_UserName to␣
→˓decrypt the data

13 model2.decryptWithUserKey(r[0][1], r[0][2], "Test_UserName") # Returns b"data"

In the case that an incorrect data, or key is provided, a ValueError will be raised.

encryptWithUserKey needs the following parameters: data, otherUsers (optional). data is the plaintext to encrypt
and otherUsers is a list of usernames of users who can also decrypt the data.

encryptWithUserKey returns a list of tuples in the following format: (username, data, salt). username is the
name of the user to who we need to provide data and salt.

When decrypting, call decryptUserKey, on the user object corresponding to username, passing data as the first
argument and salt as the second argument. It will return the plaintext.

Therefore, by using this method, you can grant another user access to some of the user’s data, simply by allowing that
user to decrypt the data.

1.4.6 Password Reset

To enable password reset you need to obtain recovery codes, that you can use to unlock the account.

1 keys = model.enablePWDReset() # keys is a list of OTPs that can be used to unlock the␣
→˓user account

2 model.logout() # This is not needed but you can reset the password of a locked out user.
3 sessionKey = model.resetPWD(keys[0], "newPWD") # Note: you cannot use keys[0] again, use␣

→˓the next one in the list.
4 # Note: when you call resetPWD the model will automatically login, you may want to logout
5 model.logout()

If a wrong code is provided, Krptn will impose a 5 second delay to slow brute force attacks. However, please note that is
not enough to fully protect you. Therefore, it is necessary to impose a proper rate limiting solution on your webserver.

You may notice in the previous code block the resetPWD returns a sessionKey. This session key is the same as
returned from the model.login method.

If the OTPs get compromised you can revoke them and generate new ones:

1 model.disablePWDReset() # Revoke
2 keys = model.enablePWDReset() # Generate. This also revokes all codes but we already did␣

→˓so previously.

1.4. User Authentication 11

Krptn, Release v0.6

1.5 Migrating to Krptn

Note: Before attempting migration please read User Auth.

Multiple methods exist to migrate from your existing IAM to Krptn. We will explore the following two options:

• Creating a script to move all users at once

• Migrating users one-by-one as they login

1.5.1 Moving all users

To achieve this, you will have to set an initial password for the users. Copy all data into Krptn, and force the user to
change their password on the next login.

1.5.2 Migrating Users One-By-One

When a user logs in, you can check whether they are saved in Krptn. If not, create them using the User Auth API. Since
you still have the user’s old password (they entered it when logging in), you can avoid creating an initial password.
After that, you can copy the user’s data into Krptn’s user object.

1.6 WebAuthn/FIDO Passwordless: both server and client setup
guide

Note: we have originally published this article on our homepage15 and only later added it to the documentation also.

For a live demo, there is a working version16 on GitHub.

Please note that this is a tutorial, not a full documentation. To use this in a production environment, please read our
FIDO docs17 also!

15 https://www.krptn.dev/news/webauthn/
16 https://github.com/krptn/flaskExample
17 https://docs.krptn.dev/README-FIDO.html

12 Chapter 1. Documentation Content

https://www.krptn.dev/news/webauthn/
https://github.com/krptn/flaskExample
https://docs.krptn.dev/README-FIDO.html

Krptn, Release v0.6

1.6.1 What is WebAuthn?

According to the FIDO Alliance18, passwords are the root cause of 80% of data breaches! It is so common, yet so many
fall for it. . . It’s simply time to fix this mess. So, the world is deploying a solution: WebAuthn.

WebAuthn allows you to login to websites using a gesture. For example, a fingerprint, an external authenticator, etc.

The server creates a challenge that the authenticator device signs using the credential. When the server verifies the
signature, it can authenticate the user. Usually, the authenticator will require the user to verify their identity using a
fingerprint, a pin code or other gesture.

Examples of authenticators include external hardware security keys and your device’s trusted platform module.

Here is the WebAuthn flowchart. Don’t worry: you don’t need to understand this to use it in your website :-)!

Here is the flowchart for registration:
18 https://fidoalliance.org/

1.6. WebAuthn/FIDO Passwordless: both server and client setup guide 13

https://fidoalliance.org/

Krptn, Release v0.6

Here is the flowchart to login:

14 Chapter 1. Documentation Content

Krptn, Release v0.6

Because of this mechanism, it is impossible to phish WebAuthn credentials, as they are never released from the authen-
ticator. Only the signed challenge is released, which is not enough to obtain the credentials. Because a large portion of
cyberattacks come from breached passwords, this can massively improve your security.

1.6.2 Setup your environment

Before proceeding, please install Python on your computer. Depending on your system, you may have Python already
installed. If not, you can always get the latest version from the Python Homepage19!

Next, use the Python package manager (pip) to install Krptn:

pip install krptn

If pip cannot find the wheels, you may need to build Krptn from source. The installation section20 of our documentation
19 https://python.org/
20 https://docs.krptn.dev/README-BUILD.html

1.6. WebAuthn/FIDO Passwordless: both server and client setup guide 15

https://python.org/
https://docs.krptn.dev/README-BUILD.html

Krptn, Release v0.6

contains instructions.

1.6.3 Create the client

First, we need some external JS:

<script async src="https://cdn.jsdelivr.net/gh/herrjemand/Base64URL-ArrayBuffer@latest/
→˓lib/base64url-arraybuffer.js"></script>

Registration

We need a way to register the credential in the user’s browser, so that the challenge can be signed.

Secondly, we need to obtain the credential’s options from the server. In the next sections, we will discuss how we
generate these:

const response = await fetch('/fidoReg', {cache: 'no-cache'});
const options = await response.json();

It is important that the response is decoded:

options.user.id = base64url.decode(options.user.id);
options.challenge = base64url.decode(options.challenge);
if (options.excludeCredentials) {

for (let cred of options.excludeCredentials) {
cred.id = base64url.decode(cred.id);

}
}

And the moment we were all waiting for! We can register the credential with the browser:

const cred = await navigator.credentials.create({
publicKey: options,

});

Unfortunately, our job is not done. . . We need to upload the browser’s response to the server. After this, the server will
store the credential in the database!

We need to prepare the browser’s response first:

if (cred.response) {
const clientDataJSON =

base64url.encode(cred.response.clientDataJSON);
const attestationObject =

base64url.encode(cred.response.attestationObject);
credential.response = {

clientDataJSON,
attestationObject,

};
}

Finally, we are ready to upload the response and finalize the registration.

16 Chapter 1. Documentation Content

Krptn, Release v0.6

await fetch('/fidoFinishReg', {
body: JSON.stringify(credential),
cache: 'no-cache',
method: 'POST',
headers: {'Content-Type': 'application/json'}

});

Again, these mysterious server endpoints will the discussed!

Login

While according to the official WebAuthn website, the user does not need to enter the password, because of Krptn’s
Zero Knowledge approach, we will require the user to provide the password anyway.

const email = "EMAIL";
const pwd = "PASSWORD";

First, we need to request the FIDO (WebAuthn) challenge from the server:

const query = {};
query.email = email;
const repsonse = await fetch('/getFidoLogin', // Mysterious endpoints will be discussed

{cache: 'no-cache',
method: 'POST',
headers: {'Content-Type': 'application/json'},
body: JSON.stringify(query)}

);
const options = await repsonse.json();

Decode:

options.challenge = base64url.decode(options.challenge);
for (let cred of options.allowCredentials) {

cred.id = base64url.decode(cred.id);
}

Next, we can request the browser to sign the challenge, thereby proving the user’s identity:

const cred = await navigator.credentials.get({
publicKey: options

});

This response will be uploaded to the server. But first, we need some base64!

const credential = {};
credential.fido = 1;
credential.id = cred.id;
credential.type = cred.type;
credential.rawId = base64url.encode(cred.rawId);

if (cred.response) {
const clientDataJSON =

base64url.encode(cred.response.clientDataJSON);
(continues on next page)

1.6. WebAuthn/FIDO Passwordless: both server and client setup guide 17

Krptn, Release v0.6

(continued from previous page)

const authenticatorData =
base64url.encode(cred.response.authenticatorData);

const signature =
base64url.encode(cred.response.signature);

const userHandle =
base64url.encode(cred.response.userHandle);

credential.response = {
clientDataJSON,
authenticatorData,
signature,
userHandle,

};
}

Finally, we can upload the response to the server and finish the authentication:

credential.pwd = pwd;
credential.email = email; // These are required by Krptn
authToken = await fetch('/fidoFinishLogin', {

body: JSON.stringify(credential),
cache: 'no-cache',
method: 'POST',
headers: {'Content-Type': 'application/json'}

});

1.6.4 Create the server

The following section assumes that the users have already been created in Krptn. You can quickly create them as
discussed in the User Auth docs21.

This also allows you to take advantage of other extensive security features in Krptn.

In order for WebAuthn to work, you need to set certain configuration options:

1 import krypton
2

3 krypton.configs.APP_NAME = "ExampleApp" # name of your app
4 ## The below are only needed for FIDO
5 krypton.configs.HOST_NAME = "example.com" # hostname, as seen by the user's browser
6 krypton.configs.ORIGIN = "https://example.com/" # again, as seen by the user's browser

HOST_NAME can be set to localhost and ORIGIN can be set to https://localhost for development.
21 https://docs.krptn.dev/README-USER-AUTH.html

18 Chapter 1. Documentation Content

https://docs.krptn.dev/README-USER-AUTH.html

Krptn, Release v0.6

Registration

Inside the /fidoReg endpoint:

1 from krypton.auth import users
2

3 model = users.standardUser(email)
4 key = model.login(...)
5 ... # Standard Krptn login procedure
6 options = model.beginFIDOSetup()

This options needs to be the response sent to the browser.

Inside /fidoFinishReg:

1 model.completeFIDOSetup(request_json_string)

Of course, you will have to store the user model in the session.

This is best achieved by setting key, as returned from model.login in a cookie, so that on each request, you can
restore the session:

1 model = users.standardUser(username_from_cookie)
2 model.restoreSession(key_from_cookie)

Login

Inside getFidoLogin:

1 model = users.standardUser(email_slash_username)
2 options = model.getFIDOOptions()

options needs to be provided in response to the request.

Inside fidoFinishLogin:

1 model = users.standardUser(name_email)
2 key = user.login(password, fido=fidoChallangeFromBrowser)

As mentioned, key can be set to keep the user authenticated in the session. Please see our User Auth docs22 for more
information.

1.6.5 Pulling it all together

Depending on which web framework you are using, the client and server side needs to be glued together differently.
We have an example where it is glued together with Flask on GitHub23.

Last, but certainly not least, after creating a GUI where the user can enter the email and password, you are ready!
22 https://docs.krptn.dev/README-USER-AUTH.html
23 https://github.com/krptn/flaskExample

1.6. WebAuthn/FIDO Passwordless: both server and client setup guide 19

https://docs.krptn.dev/README-USER-AUTH.html
https://github.com/krptn/flaskExample

Krptn, Release v0.6

1.6.6 Full Code and wrap up

Note: In order for this section to make sense, please read User Auth first.

To see WebAuthn with Krptn implemented in action, you can have a look at our Flask example24 on GitHub.

First make sure that the required configuration options for FIDO are set (app name, origin).

Currently, we only support passwordless as a second (or third) authentication factor. The password still has to be
enabled.

For security reasons, we can only have one FIDO credential registered. To remove the FIDO credential:

For convention,model will be the current user’s user model (that is, standardUser object). It is your task to retrieve
the model using user sessions.

1 model.removeFIDO()

Register

1 options = model.beginFIDOSetup()

The above code generates options for FIDO. Please send these to the client’s browser. In the browser, please run the
following JS:

<!---
This code was taken from Google's WebAuthn Glitch Tutorial: https://glitch.com/edit/#!

→˓/webauthn-codelab-start?path=README.md%3A1%3A0
This code was changed to work with Krypton's Auth Backends. These include changing␣

→˓auth URLs, loading JSON data.

Here is the original copyright notice:

Copyright 2019 Google Inc. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License

--->
<script async src="https://cdn.jsdelivr.net/gh/herrjemand/Base64URL-ArrayBuffer@latest/
→˓lib/base64url-arraybuffer.js"></script>
<script>

async function register() {
(continues on next page)

24 https://github.com/krptn/flaskExample

20 Chapter 1. Documentation Content

https://github.com/krptn/flaskExample

Krptn, Release v0.6

(continued from previous page)

const response = await fetch('/fidoReg', {cache: 'no-cache'}); // /fidoReg␣
→˓should return FIDO options as generated above

const options = await response.json();

options.user.id = base64url.decode(options.user.id);
options.challenge = base64url.decode(options.challenge);

if (options.excludeCredentials) {
for (let cred of options.excludeCredentials) {

cred.id = base64url.decode(cred.id);
}

}

const cred = await navigator.credentials.create({
publicKey: options,

});

const credential = {};
credential.id = cred.id;
credential.rawId = base64url.encode(cred.rawId);
credential.type = cred.type;

if (cred.response) {
const clientDataJSON =

base64url.encode(cred.response.clientDataJSON);
const attestationObject =

base64url.encode(cred.response.attestationObject);
credential.response = {

clientDataJSON,
attestationObject,

};
}
localStorage.setItem('KryptonFIDOcredId', credential.id);
return await fetch('/fidoFinishReg', { // See below what /fidoFinishReg should do

body: JSON.stringify(credential),
cache: 'no-cache',
method: 'POST',
headers: {'Content-Type': 'application/json'}

});
}

</script>

Please see our tutorial25 for more details on the above code.

Inside /fidoFinishReg (or however you rename it):

1 import json
2 model.completeFIDOSetup(json.dumps(request.get_json()["credentials"])) # Of course,␣

→˓depending on your web framework this will differ

25 https://www.krptn.dev/news/webauthn/

1.6. WebAuthn/FIDO Passwordless: both server and client setup guide 21

https://www.krptn.dev/news/webauthn/

Krptn, Release v0.6

Login

First of all, we need to obtain our FIDO options:

1 options = model.getFIDOOptions()

These will need to be transmited to the browser, and the result (returned from the browser) of the authentication should
be passed to login function:

1 model.login(pwd='MyPWD', fido=fidoResponse) # fidoResponse, is the stringified JSON from␣
→˓the browser.

On failure, a krypton.auth.users.bases.UserError will be raised and model.FIDORequired will be set to
True.

To obtain authentication result in the browser:

<!---
Some of this code was taken from Google's WebAuthn Glitch Tutorial: https://glitch.

→˓com/edit/#!/webauthn-codelab-start?path=README.md%3A1%3A0
This code was changed to work with Krypton's Auth Backends. These include changing␣

→˓auth URLs, loading JSON data.

Here is the original copyright notice:

Copyright 2019 Google Inc. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License

--->
<script async src="https://cdn.jsdelivr.net/gh/herrjemand/Base64URL-ArrayBuffer@latest/
→˓lib/base64url-arraybuffer.js"></script>
<script>

async function doFido() {
const email = document.getElementsByName('email')[0].value; // Replace with your␣

→˓password form
const pwd = document.getElementsByName('password')[0].value; // Replace with␣

→˓your password form
const query = {}
query.email = email;

// To the below request, please return the response from model.getFIDOOptions()
// Don't forget to replace your endpoint
const repsonse = await fetch('/getFidoLogin', // Replace endpoint with yours

{cache: 'no-cache',
(continues on next page)

22 Chapter 1. Documentation Content

Krptn, Release v0.6

(continued from previous page)

method: 'POST',
headers: {'Content-Type': 'application/json'},
body: JSON.stringify(query)}

);

const options = await repsonse.json();

options.challenge = base64url.decode(options.challenge);

for (let cred of options.allowCredentials) {
cred.id = base64url.decode(cred.id);

}
const cred = await navigator.credentials.get({

publicKey: options
});

const credential = {};
credential.fido = 1;
credential.id = cred.id;
credential.type = cred.type;
credential.rawId = base64url.encode(cred.rawId);

if (cred.response) {
const clientDataJSON =

base64url.encode(cred.response.clientDataJSON);
const authenticatorData =

base64url.encode(cred.response.authenticatorData);
const signature =

base64url.encode(cred.response.signature);
const userHandle =

base64url.encode(cred.response.userHandle);
credential.response = {

clientDataJSON,
authenticatorData,
signature,
userHandle,

};
}
const finalCredentials = JSON.stringify(credential);
// Please pass the stringified JSON `finalCredentials` as the `fido` parameter to␣

→˓the `login` function.
// You still need to provide the user's password to the funcion also.

}
</script>

1.6. WebAuthn/FIDO Passwordless: both server and client setup guide 23

Krptn, Release v0.6

1.6.7 Copyright

Throughout the tutorial, we used some code from Google’s tutorial on FIDO. This code is in the client side where we
decode/encode the credentials.

Here is the original, Google’s, copyright notice:

Copyright 2019 Google Inc. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License

1.7 Flask Integration

It is important the you first read User Auth API . The User Auth API needs to be used in Flask.

In this example we will use WebAuthn (FIDO).

For Flask Integration, please see the example implementation on GitHub26.

1.8 Django Integration

Warning: Because Krptn uses a Zero Knowledge27 security model, the Django Admin cannot change the user’s
password, or any other attributes. Any attempt to do so will fail. To avoid tempting administrators to try anyway, it
may be a good idea to remove these forms from the admin site.

Note: In order for this to make sense please read User Auth first. It it also useful to have a knowledge of the Django
webframework.

You can check our example implementation28 on GitHub.

As you will notice, Krptn does not integrate with Django’s Authentication but rather serves as a replacement. However,
this comes with the limitation that (whitout extra programming) you cannot login with a Krptn account into the Django
admin site. For that, you need to create a Django account.

26 https://github.com/krptn/flaskExample
27 https://www.krptn.dev/news/zero-knowledge/
28 https://github.com/krptn/djangoExample

24 Chapter 1. Documentation Content

https://github.com/krptn/flaskExample
https://www.krptn.dev/news/zero-knowledge/
https://github.com/krptn/djangoExample

Krptn, Release v0.6

Also, Krptn accounts, because of our strict security model, will have issues with Django’s permissions. Avoid using
built-in Django permision management and instead do permision checks manually. The only exception to this is the
login_required decorator, but this is only valid, if you have your custom login page configured (/accounts/login).

1.8.1 Middleware

In order to use Krptn’s user model as request.user in your view, you need to install the middleware.

Please add Krptn middleware to the end of the list.

For exmaple:

1 MIDDLEWARE = [
2 'django.middleware.security.SecurityMiddleware',
3 'django.contrib.sessions.middleware.SessionMiddleware',
4 'django.middleware.common.CommonMiddleware',
5 'django.middleware.csrf.CsrfViewMiddleware',
6 'django.contrib.auth.middleware.AuthenticationMiddleware',
7 'django.contrib.messages.middleware.MessageMiddleware',
8 'django.middleware.clickjacking.XFrameOptionsMiddleware',
9 'krypton.auth.django.middleware.kryptonLoginMiddleware' ## <-- Like here

10]

Inside your views:

1 def aRandomView(request):
2 request.user.
3 # request.user is a krypton.auth.django.users.djangoUser object
4 # djangoUser object has the same interface as a standardUser objects

1.8.2 Forms

Krptn requires custom forms for user management (e.g.: creation, password reset, etc..). You need to configure the
forms. Because everyone has a wide variety of needs regarding user creation, there is no single form to use. You need
to create these forms according your needs.

We will breifly discuss how to create these forms.

Create User

1 from django import forms
2 from krypton.auth.django import users
3

4 class UserCreationForm(forms.Form):
5 Password = forms.CharField(widget=forms.PasswordInput)
6 userName = forms.CharField(label = "User Name")
7 age = forms.CharField(label = "Age")
8 def save(self, commit=True):
9 user = users.djangoUser(None)

10 token = user.saveNewUser(pwd=self.cleaned_data["Password"], name=self.cleaned_
→˓data["userName"])

(continues on next page)

1.8. Django Integration 25

Krptn, Release v0.6

(continued from previous page)

11 user.setData("Age", self.cleaned_data["age"])
12 return token, user.id

Do not forget to set token and user.id as cookies in any view that handles authentication!! Otherwise, the middleware
will have issues!

1 response.set_cookie("_KryptonUserID", UserId)
2 response.set_cookie("_KryptonSessionToken", token, 15*60) # set token for 15 minutes

The cookies have to have the same name as in the above example.

Again, you will need to customise this form to include fields that you need.

As you can see we use Krptn’s User Auth inside the forms save method.

Login

This form depends on whether you are using MFA and whether you use FIDO or TOTP MFA.

In this example, we will use TOTP.

1 class LoginForm(forms.Form):
2 userName = forms.CharField(label = "User Name")
3 password = forms.CharField(widget=forms.PasswordInput)
4 totp = forms.IntegerField(label = "TOTP")
5 def save(self, commit=True):
6 user = users.djangoUser(self.cleaned_data["userName"])
7 token = user.login(pwd=self.cleaned_data["userName"], mfaToken=str(self.cleaned_

→˓data["totp"]))
8 return token, user.id

Do not forget to set token and user.id as cookies in any view that handles authentication!! Otherwise, the middleware
will have issues!

1 response.set_cookie("_KryptonUserID", UserId)
2 response.set_cookie("_KryptonSessionToken", token, 15*60) # set token for 15 minutes

The cookies have to have the same name as in the above example.

Other forms

There are plenty of other possible forms. For example, enabling MFA, password resets, etc.. However, we will not
discuess them.

In case of any doubt, you can check our example29 on GitHub or reach out to us.
29 https://github.com/krptn/djangoExample

26 Chapter 1. Documentation Content

https://github.com/krptn/djangoExample

Krptn, Release v0.6

1.9 Crypto Class

Warning: Crypto Class is not thread-safe. Please create a new object to use in each thread!

Here is a simple usage example:

1 from krypton.basic import Crypto
2

3 cryptoObject = Crypto()
4 id = cryptoObject.secureCreate("data", "pwd") # returns an integer
5 print("Reading data:")
6 print(cryptoObject.secureRead(id, "pwd")) # Prints data
7

8 print("Updating data:")
9 cryptoObject.secureUpdate(id, "New Data", "pwd")

10 print(cryptoObject.secureRead(id, "pwd")) # Prints New Data
11

12 print("Deleting:")
13 cryptoObject.secureDelete(id, "pwd")

1.10 Key Management System

Note: KMS is not thread-safe. Please create a new object to use in each thread!

This module uses a custom Key Management System for AES-256 keys.

You need to identify the key with a name and a password.

1 from krypton.basic import KMS
2 obj = KMS()
3 key = obj.createNewKey("KeyName", "password")
4 keyAgain = obj.getKey("KeyName", "password")
5 ## Note getKey raises a krypton.basic.KeyManagementError
6 # if the cryptoperiod of the key has expired as
7 # specified in the configs. To get the key
8 # anyway, add force=True to the parameters.
9 obj.removeKey("KeyName", "password")

1.9. Crypto Class 27

Krptn, Release v0.6

1.11 Building Krptn

In case there aren’t any pre-built wheels on PyPI for your platform, you may need to build from source.

1.11.1 Building from source

Note: apart from x86 on Windows, only 64-bit environments are supported.

To build Krptn, you will need:

• A C++ compiler

• Build tools required by OpenSSL (please see OpenSSL’s guide for information30)

After cloning the repo from GitHub31 (and checking out your version using git tags), please build and install OpenSSL
3, which is included as a git submodule:

• Install openssl in the kr-openssl-install/ and place configurations in kr-openssl-config/ directories.

– Therefore, in the configure script, you need --prefix and --openssldir set.

• As Krptn uses the FIPS module, please set enable-fips also.

For complete instructions on building OpenSSL, please see OpenSSL’s installation instructions32.

For example (Windows example):

perl Configure --prefix="C:\Users\markb\source\repos\krypton\kr-openssl-install" \
--openssldir="C:\Users\markb\source\repos\krypton\kr-openssl-config" \
enable-fips

You need to both build and install OpenSSL:

make
make install

To install the extension:

pip install .

1.12 CLI Interface

Currently Krptn only exposes one CLI option: --clean.

This commands cleans the database used by Krptn. Currently, it is not possible to erase custom databases (only the
default database is erased). Please erase custom databases manually.

Because it erases all content from the database, to avoid errors, please close any instances of Krptn before running this
command.

Here is an example usage:

python -m krypton --clean

30 https://github.com/openssl/openssl/blob/master/INSTALL.md#prerequisites
31 https://github.com/krptn/krypton
32 https://github.com/openssl/openssl/blob/master/INSTALL.md

28 Chapter 1. Documentation Content

https://github.com/openssl/openssl/blob/master/INSTALL.md#prerequisites
https://github.com/krptn/krypton
https://github.com/openssl/openssl/blob/master/INSTALL.md

Krptn, Release v0.6

1.13 Common Issues

1.13.1 I get SQLAlchemy errors about missing columns/tables

This error occures if Krptn is upgraded and the new version uses a different database schema. Generally, there will be
tools provided to fix such errors. Please check the corresponding release on GitHub.

However, if you are using a development or pre-release version you will have to erase your database. If you have not
set a custom database, this can easily be achieved from Krptn’s CLI:

python -m krypton --clean

1.13.2 I get an error about failing to load the FIPS provider

Krptn uses OpenSSL’s FIPS module for cryptography. Generally, this allows US government agencies to use this
software. However, the downside is that it requires self-tests to be loaded. This error happens when the self tests could
either not be performed, or there is an error in the configuration.

If you get this error, please open an issue on GitHub33 and attempt the following fix:

1. Locate your Krptn installation by running pip show krptn.

2. Navigate to the location inidicated by pip.

3. There is a folder named kr-openssl-install. Inside that, locate:

• on GNU/Linux, libssl.so.3 and libcrypto.so.3;

• on Windows, libcrypto-3.dll and libssl-3.dll (or for x64 libssl-3-x64.dll and
libcrypto-3-x64.dll);

• on Mac, libcrypto.dylib and libssl.dylib.

4. With this directory:

• On Windows, add it to PATH;

• On GNU/Linux, call /sbin/ldconfig <directory-path>, or set LD_LIBRARY_PATH environment
variable to point to it;

• On MacOS, set DYLD_LIBRARY_PATH to point to it.

5. Inside kr-openssl-install locate the openssl executable.

6. Inside kr-openssl-install locate the fips shared library (either fips.so, fips.dll, or fips.dylib).

7. In the path where pip inidcated packages are installed, there is another folder named kr-openssl-config.

• In that directory, locate openssl.cnf and delete it;

• Create an empty fipsmodule.cnf or empty it if it already exists.

8. Call the Openssl executabe openssl fipsinstall -module {path to fips lib} -out {your path
to kr-openssl-config/fipsmodule.cnf}.

9. Retry the task you were attempting.

10. Open an issue on GitHub34 about this so that we can prevent such bugs in the future.
33 https://github.com/krptn/krypton
34 https://github.com/krptn/krypton

1.13. Common Issues 29

https://github.com/krptn/krypton
https://github.com/krptn/krypton

Krptn, Release v0.6

1.13.3 Other issues

If you have any other issues, we recommend doing the following:

1. Checking that your Krptn install is the latest version.

2. Opening an issue on GitHub35 about your problem.

1.14 Security Policy

1.14.1 Supported Versions

Only the most recent version is supported; however, we are still interested in learning about security vulnerabilities in
previous versions.

1.14.2 Reporting a Vulnerability

Vulnerabilitis affecting the Krptn module

If your vulnerability affects the code that is installed on peoples devices when they pip install krptn, please fill
out this form36.

We also welcome vulnerabilities with no existing exploits. That means, for example, a use of an insecure cipher, that
cannot be directly exploited, but is better fixed.

Other vulnerabilites

If your vulnerability is not to do with the Python package (e.g.: XSS vulnerability on our website), please follow the
below instructions.

Email security vulnerabilities to security@krptn.dev.

Please make sure the following information is clearly stated:

• What components are affected?

• PoC - if any (please see our below notice)

• Recommendations on fixes, if any

We also welcome vulnerabilities with no existing exploits. That means, for example, a use of an insecure cipher, that
cannot be directly exploited, but is better fixed.

35 https://github.com/krptn/krypton
36 https://github.com/krptn/krypton/security/advisories/new

30 Chapter 1. Documentation Content

https://github.com/krptn/krypton
https://github.com/krptn/krypton/security/advisories/new
mailto:security@krptn.dev

Krptn, Release v0.6

1.14.3 Vulnerability Publishing

Any published vulnerabilities will be available under the Security tab of affected GitHub repositories. To view them,
click on the tab and select advisories under the reporting section.

Important vulnerabilities will also appear under our news on our homepage37.

1.15 API Reference

1.15.1 krypton.basic

1.15.2 krypton.auth.users.bases

1.15.3 krypton.auth.users.userModel

1.15.4 krypton.auth.users.userModelBaseAuth

1.15.5 krypton.auth.users.userModelMFAAuth

1.15.6 krypton.auth.factors

1.15.7 krypton.auth._utils

1.15.8 krypton.base

37 https://www.krptn.dev/news/

1.15. API Reference 31

https://www.krptn.dev/news/

	Documentation Content
	Krptn
	What problem do we solve?
	What is this?
	Features
	Example usage of the Crypto Class

	Installation
	User Auth
	Integration with web frameworks
	Crypto Class
	Key Management System
	Use custom databases
	Settings
	Planned

	Configuration
	Databases
	FIDO Auth & MFA

	Custom Databases
	Microsoft SQL Server
	MySQL
	SQLite
	PostgreSQL

	User Authentication
	User Sessions
	Sign out of all sessions

	Logs
	Change Username
	MFA
	TOTP
	FIDO Passwordless

	Data Sharing
	Sharing
	Encryption

	Password Reset

	Migrating to Krptn
	Moving all users
	Migrating Users One-By-One

	WebAuthn/FIDO Passwordless: both server and client setup guide
	What is WebAuthn?
	Setup your environment
	Create the client
	Registration
	Login

	Create the server
	Registration
	Login

	Pulling it all together
	Full Code and wrap up
	Register
	Login

	Copyright

	Flask Integration
	Django Integration
	Middleware
	Forms
	Create User
	Login
	Other forms

	Crypto Class
	Key Management System
	Building Krptn
	Building from source

	CLI Interface
	Common Issues
	I get SQLAlchemy errors about missing columns/tables
	I get an error about failing to load the FIPS provider
	Other issues

	Security Policy
	Supported Versions
	Reporting a Vulnerability
	Vulnerabilitis affecting the Krptn module
	Other vulnerabilites

	Vulnerability Publishing

	API Reference
	krypton.basic
	krypton.auth.users.bases
	krypton.auth.users.userModel
	krypton.auth.users.userModelBaseAuth
	krypton.auth.users.userModelMFAAuth
	krypton.auth.factors
	krypton.auth._utils
	krypton.base

